Закон ома для переменного тока. Формула, полное сопротивление

ЭЛЕКТРИЧЕСКИЙ ТОК

Электрический ток - это упорядоченное движение заряженных частиц.

За направление тока принято направление движения положительных зарядов.

Электрический ток вызывает нагревание проводника. Вокруг проводника с током существует магнитное поле. Электрический ток способен оказывать химическое действие.

Сила тока - заряд, переносимый через поперечное сечение проводника в единицу времени:

При токе 1 А через поперечное сечение проводника за 1 с проходит заряд 1 Кл.

За время Δt через поперечное сечение проводника S проходят заряженные частицы, содержащиеся в объеме

где - их средняя скорость направленного движения.

Если заряд каждой частицы равен q 0 , а их концентрация n, то общий заряд, прошедший через поперечное сечение проводника за время t равен

Отсюда сила тока

Электрический ток возникает при наличии свободных заряженных частиц и электрического поля.

Концентрация свободных носителей заряда в проводниках существенно выше, чем в диэлектриках. Для создания стационарного электрического поля внутри проводника между его концами должна поддерживаться разность потенциалов. Если она длительное время остается неизменной, то по проводнику проходит постоянный электрический ток.

Закон Ома для участка цепи

Сила тока прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R :

Сопротивление проводника равно 1 Ом, если при напряжении 1 В через него течет ток 1 А. Сопротивление R проводника прямо пропорционально его длине l и обратно пропорционально площади поперечного сечения S:

где ρ- удельное сопротивление материала

ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЯ ПРОВОДНИКОВ

При последовательном соединении двух проводников: I=I 1 =I 2 , U=U 1 +U 2

Разделив второе равенство на первое, получаем:

Так как I=U 1 /R 1 =U 2 /R 2

U 1 /U 2 =R 1 /R 2

При параллельном соединении двух проводников:

I=I 1 +I 2 , U=U 1 =U 2

Разделив первое равенство на второе, получаем:

U=I 1 R 1 =I 2 R 2

тоI 1 /I 2 =R 1 /R 2

РАБОТА И МОЩНОСТЬ ПОСТОЯННОГО ТОКА

При прохождении тока через проводник происходит его нагревание, значит электрическая энергия переходит в тепловую.

Работа электрического поля по перемещению заряда ∆ q из одной точки в другую равна произведению напряжения U между этими точками на величину заряда

Учитывая, что получаем:

Итак, энергия, выделяющаяся при протекании тока на участке цепи, пропорциональна силе тока, напряжению и времени.

Так как U = IR , то pазделив последнее равенство на t, получаем выражения для мощности электрического тока:

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.

Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.

ЭДС источника равна сумме напряжений на внешнем и внутреннем участках цепи

где r - внутреннее сопротивление источника.

Закон Ома для полной цепи

Сила тока прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи:

Работа сторонних сил по перемещению вдоль замкнутого контура заряда q = I ∆t равна

Она идет на нагревание внешнего и внутреннего участков цепи:

Сокращая, получаем: ε = IR + Ir .

В случае, когда последовательная цепь содержит несколько источников тока, результирующая ЭДС равна алгебраической сумме ЭДС источников с учетом их знаков: ε = ε 1 + ε 2 + ε 3 + … , а внутреннее сопротивление - сумме всех их внутренних сопротивлений: r = r 1 + r 2 + r 3 + … .

Пример. ЭДС батареи 6,0 В, ее внутреннее сопротивление 0,5 Ом, сопротивление внешней цепи 11,5 Ом. Найдите силу тока в цепи, напряжение на зажимах батареи и падение напряжения внутри батареи.

Пусть R - сопротивление внешнего участка цепи, r - внутреннее сопротивление батареи.

Тогда по закону Ома для замкнутой цепи

где ε - ЭДС батареи, I - сила тока в цепи. Так как сила тока I одинакова как для внешнего, так и для внутреннего участков цепи, то напряжение на зажимах батареи, т.е. на внешнем участке цепи с сопротивлением R , по закону Ома для этого однородного участка есть:

Аналогично, для внутреннего участка цепи, имеющего сопротивление r, можно записать U r = I*r. Учитывая формулу силы тока, имеем для U r:

Подставляем значения и проводим расчеты I, U, U r :

Ответ: сила тока в цепи равна 0,5 А; напряжение на зажимах батареи 5,75 В; падение напряжения на внутреннем сопротивлении 0,25В

Закон Ома часто называют основным законом электричества. Открывший его в 1826 г. известный немецкий физик Георг Симон Ом установил зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением и силой тока.

Электрическая цепь

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что же такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока , а силы - сторонними силами .

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью . Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

Параметры электрической цепи

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами. Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Если к 2 аккумуляторам добавить ещё один такой же, сила тока увеличится втрое, напряжение тоже утроится.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника .

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению .

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Конечно, опыт Ома был другим. В те времена не существовало амперметров, и, чтобы измерить силу тока, Ом использовал крутильные весы Кулона. Источником тока служил элемент Вольта из цинка и меди, которые находились в растворе соляной кислоты. Медные проволоки помещались в чашки со ртутью. Туда же подводились концы проводов от источника тока. Проволоки были одинакового сечения, но разной длины. За счёт этого менялась величина сопротивления. Поочерёдно включая в цепь различные проволоки, наблюдали за углом поворота магнитной стрелки в крутильных весах. Собственно, измерялась не сама сила тока, а изменение магнитного действия тока за счёт включения в цепь проволок различного сопротивления. Ом называл это «потерей силы».

Но так или иначе эксперименты учёного позволили ему вывести свой знаменитый закон.

Георг Симон Ом

Закон Ома для полной цепи

Между тем, формула, выведенная самим Омом, выглядела так:

Это не что иное, как формула закона Ома для полной электрической цепи: « Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений внешней цепи и внутреннего сопротивления источника ».

В опытах Ома величина Х показывала изменение величины тока. В современной формуле ей соответствует сила тока I , протекающего в цепи. Величина а характеризовала свойства источника напряжения, что соответствует современному обозначению электродвижущей силы (ЭДС) ε . Значение величины l зависело от длины проводников, соединявших элементы электрической цепи. Эта величина являлась аналогией сопротивления внешней электрической цепи R . Параметр b характеризовал свойства всей установки, на которой проводился опыт. В современной обозначении это r – внутреннее сопротивление источника тока.

Как выводится современная формула закона Ома для полной цепи?

ЭДС источника равна сумме падений напряжений на внешней цепи (U ) и на самом источнике (U 1 ).

ε = U + U 1 .

Из закона Ома I = U / R следует, что U = I · R , а U 1 = I · r .

Подставив эти выражения в предыдущее, получим:

ε = I · R + I · r = I · (R + r) , откуда

По закону Ома напряжение во внешней цепи равно произведению силы тока на сопротивление. U = I · R . Оно всегда меньше, чем ЭДС источника. Разница равна величине U 1 = I · r .

Что происходит при работе батарейки или аккумулятора? По мере того, как разряжается батарейка, растёт её внутренне сопротивление. Следовательно, увеличивается U 1 и уменьшается U .

Полный закон Ома превращается в закон Ома для участка цепи, если убрать из него параметры источника.

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием . Ток, называемый током короткого замыкания , будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z , где Z - полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U / R

Мощность и закон Ома

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I 2 · R

Как видим, чем больше ток или напряжение, тем больше мощность . Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Вместо эпилога

Небольшая подсказка для тех, кто путается и не может запомнить формулу закона Ома.

Разделим треугольник на 3 части. Причём, каким образом мы это сделаем, совершенно неважно. Впишем в каждую из них величины, входящие в закон Ома - так, как показано на рисунке.

Закроем величину, которую нужно найти. Если оставшиеся величины находятся на одном уровне, то их нужно перемножить. Если же они располагаются на разных уровнях, то величину, расположенную выше, необходимо разделить на нижнюю.

Закон Ома широко применяется на практике при проектировании электрических сетей в производстве и в быту.

Пусть источник тока создает переменное гармоническое напряжение (рисунок)

U(t) = U o sinωt . (1)

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R , подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

I(t) = U(t)/R = (U o /R)sinωt = I o sinωt ,

Где I o = U o /R ? амплитудное значение силы тока в цепи.
Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.
Величины U o и I o = U o /R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t) , зависящие от времени, называют мгновенными.
Зная мгновенные значения U(t) и I(t) , можно вычислить мгновенную мощность P(t) = U(t)I(t) , которая, в отличие от цепей постоянного тока, изменяется с течением времени.
С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде

P(t) = U(t)I(t) = I 2 (t)R = I o 2 Rsin 2 ωt .

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.
Перепишем формулу для мощности по-другому:

P = UI = U o I o sin 2 ωt = (1/2)U o I o (1 ? cos2ωt) = U o I o /2 ? (U o I o /2)cos2ωt .

Первое слагаемое не зависит от времени. Второе слагаемое? переменная составляющая? функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рисунок).
Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле

P cp = U o I o /2 = I o 2 /R .

Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.
Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока

P пост =I 2 R ,

То с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока

I д = I o /?2 .

Аналогично можно ввести действующее значение и для напряжения

U д = U o /?2 .

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

P = U д I д = I д 2 R = U д 2 /R, I д = U д /R .

41.1. Треугольники напряжений и сопротивлений.

Амплитуды составляющих общего напряжения:

Действующие значения:

Вектор общего напряжения:

Для того, чтобы найти значение вектора U, построим векторную диаграмму (рис. а). За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительнымнаправлением оси, от которой отсчитываются фазовые углы.

Вектор по направлению совпадает с вектором тока I, а вектор направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор общего напряжения U опережает вектор тока I на угол >0, но < , а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения вактивном и индуктивном сопротивлениях и : =Ucos

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Ua =

Проекция вектора напряжения U на направление, перпендикулярное вектору тока называется реактивной составляющей вектора напряжения и обозначается Up. Up =

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. б), катетами которого являются активное и индуктивное сопротивления, а гипотенузой – величина .

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.

Из треугольника сопротивлений следует:

41.2. Полное сопротивление.

Полное сопротивление (Z) - это векторная сумма всех сопротивлений: активного, емкостного и индуктивного.

Полное сопротивление цепи.

41.3. Угол сдвига фаз между напряжением и током.

Аргумент комплексного сопротивления j есть разность начальных фаз напряжения и тока, но его можно также определить по вещественной и мнимой составляющим комплексного сопротивления как j = arctg(X /R ). Следовательно, сдвиг фаз между напряжением и током определяется только параметрами нагрузки и не зависит от параметров тока и напряжения в цепи . Из выражения следует, что положительные значения j соответствуют отставанию тока по фазе, а отрицательные - опережению.

41.4. Закон Ома для действующих и амплитудных значений тока и напряжения.

В активном элементе r происходит необратимое преобразование электрической

энергии в тепловую энергию. Мгновенные значения тока i и напряжения u связаны

законом Ома:

Если ток изменяется по синусоидальному закону тогда напряжение:

С другой стороны мгновенное значение напряжения:

Отсюда получен закон Ома для амплитудных значений: , и закон Ома для действующих значений:

42. Энергетический процесс. Мгновенная, активная, реактивная и полная мощности. Треугольник мощностей. Коэффициент мощности .

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи
По определению, электрическое напряжение - это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, - это работа в единицу времени. Введём обозначения: U - напряжение на участке A-B (принимаем его постоянным на интервале Δt ), Q - количество зарядов, прошедших от А к B за время Δt . А - работа, совершённая зарядом Q при движении по участку A-B, P - мощность. Записывая вышеприведённые рассуждения, получаем:

Для всех зарядов:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p (t ), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u (t ) и силы тока i (t ) на этом участке:

Активная мощность
Измеряется в W [Вт] Ватт.
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U иI - среднеквадратичные значения напряжения и тока, φ - угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

Реактивная мощность

Единица измерения - вольт-ампер реактивный (var, вар)

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает - отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности - это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную - то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Единица полной электрической мощности - вольт-ампер (V·A, В·А)

Полная мощность - величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I ; связана с активной и реактивной мощностями соотношением: где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели,распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Цель: экспериментально определить импеданс различных нагрузок и сопоставить экспериментальные значения с теоретическими.

Теоретическая часть

Рассмотрим соотношения между током и напряжением в цепи переменного тока при включении в нее различных нагрузок (рис. 29).

Омическое сопротивление. Под этим термином понимают сопротивление проводника постоянному току. В дальнейшем будем рассматривать квазистационарные токи, для которых мгновенные значения силы тока и напряжения, обозначаемые малыми буквами i и u , подчиняются законам Ома и Джоуля-Ленца. Амплитудные значения тока и напряжения будем обозначать I m и U m .

Пусть к омическому сопротивлению приложено напряжение, меняющееся по гармоническому закону:

U = U m сos wt , (31)

где w – циклическая частота колебаний. Согласно закону Ома через R потечет ток силой i :

i = I m сos wt , (33)

Из соотношений (32) и (33) следует:

1) фазы тока и напряжения на омическом сопротивлении совпадают;

2) амплитуды силы тока и напряжения связаны соотношением

Рис. 29. Омическая, индуктивная и емкостная нагрузки

Индуктивное сопротивление. Подадим на катушку, обладающую индуктивностью L и пренебрежимо малым омическим сопротивлением, напряжение, меняющееся по закону (31). В катушке возникает меняющийся ток, создающий переменное магнитное поле. Изменение магнитного потока Ф = Li этого поля возбудит в витках катушки ЭДС самоиндукции

.

Поскольку подводимое к катушке напряжение играет роль ЭДС, а падение напряжения в цепи отсутствует (R = 0), по второму правилу Кирхгофа для мгновенных значений можем записать:

u + = 0 или .

Последнее перепишем в виде дифференциального уравнения

Или .

Интегрирование этого уравнения дает следующее выражение:

.

,

(35)

Из (31) и (35) следует:

1) ток, проходящий через катушку, отстает от напряжения по фазе на p/2 или, что то же самое, напряжение опережает ток по фазе на p/2;

Из сопоставления (36) с (32) следует, что величина wL в цепи с индуктивностью играет роль сопротивления. Величину

X L = wL (37)

называют индуктивным сопротивлением .

Емкостное сопротивление . Конденсатор представляет собой разрыв проводов, поэтому постоянный ток он не пропускает. При изменении напряжения между обкладками меняется и мгновенное значение заряда конденсатора, определяемого формулой

q = Cu , (38)

для чего в подводящих проводах должен протекать ток, приносящий заряд к обкладкам или уносящий от них. Говорят, что конденсатор пропускает переменный ток, хотя в пространстве между обкладками никакой передачи заряда от одной обкладки к другой не происходит.

Проходящий по проводам заряд скапливается на обкладках конденсатора, поэтому его величина равна i = dq/dt , где q – мгновенное значение заряда обкладки. Учитывая (38) и считая подаваемое напряжение меняющимся по закону (31), получаем:

.

Так как cos (p/2 + wt ) = –sin wt, последнее примет вид:

. (39)

Сопоставляя (31) и (39), имеем:

1) ток в цепи с конденсатором опережает напряжение по фазе на p/2, иначе говоря, напряжение отстает от тока по фазе на p/2;

2) амплитуды тока и напряжения связаны соотношением

. (40)

Величину

называют емкостным сопротивлением .

При измерениях и расчетах цепей переменного тока вместо амплитудных пользуются действующими (эффективными) значениями силы тока I и напряжения U , которые связаны с амплитудными:

Их использование обусловлено тем, что закон Джоуля-Ленца в случае переменного тока принимает такой же вид, как и для постоянного. Соответственно электроизмерительные приборы градуируются на эффективные значения.

Очевидно, что формулы (34), (36) и (40) не изменяются при замене амплитудных значений на эффективные и примут вид:

U R = I × R , U L = I × wL , U C = I /wC , (42)

где индексы R , L и C означают напряжение на соответствующей нагрузке.

Векторные диаграммы . Фазовые соотношения между током и напряжением графически изображены на рис. 30.

Существует и другой способ их представления, позволяющий упростить расчеты цепей со сложной нагрузкой.

Рис. 31

Проведем из некоторой точки О (рис. 31) ось ОХ и отложим из той же точки вектор А под углом j к оси ОХ . Затем приведем этот вектор во вращение вокруг точки О в плоскости рисунка против часовой стрелки с угловой скоростью w. Угол a между А® и ОХ спустя время t будет a = wt + j. Проекция А® на ось ОХ равна

А Х = Х = A cos a

Х = A cos (wt + j). (43)

Вывод: всякое гармоническое колебание можно представить вращением вектора соответствующей длины и ориентации.

Следовательно, если построить вектор U и под соответствующим углом отложить вектор I , то при совместном вращении векторов угол между ними останется неизменным (43). Векторные диаграммы токов и напряжений при различных нагрузках приведены на рис. 32.

Последовательное соединение R , L и С . Для расчета такой цепи воспользуемся методом векторных диаграмм. При последовательном соединении нагрузок мгновенное значение силы тока во всех точках цепи должно быть одинаковым, т.е. фаза тока на всех нагрузках одинакова.

Однако напряжения на нагрузках не совпадают по фазе с током. Напряжение на омическом сопротивлении совпадает по фазе с током, на индуктивном – опережает ток на p/2, на емкостном – отстает на p/2. Таким образом, сложив векторы U R , U L и U C , получим полное напряжение, приложенное к цепи. Поскольку U L и U C противоположны по направлению, удобнее сначала сложить их, а затем вектор U L – U C сложить с U R . В итоге имеем:

.

Подставляя соотношения (42), получим:

. (44)

В этом выражении роль сопротивления выполняет величина

, (45)

называемая полным сопротивлением цепи переменному току или импедансом . С ее использованием (44) примет вид:

U = I × Z. (46)

Это выражение часто называют законом Ома для переменных токов. Величина

(47)

называется реактивным сопротивлением и является комбинацией индуктивного и емкостного сопротивлений.

Векторная диаграмма (рис. 33) также показывает, что приложенное напряжение и протекающий в цепи ток колеблются не в одинаковой фазе, а имеют между собой сдвиг фаз j, величина которого определяется любой из приведенных ниже формул, следующих из диаграммы:

; ;

.


Следует отметить, что формула (46) является общей для любого соединения нагрузок, а формулы (45), (47) и (48) справедливы лишь для частного случая последовательного соединения.

Экспериментальная часть

Оборудование: реостат 1000 Ом, ключ, амперметр, вольтметр, реостат 100 Ом, батарея конденсаторов, катушка.

Порядок выполнения работы

Задание 1. Измерение омического сопротивления.

Схема установки приведена на рис. 34.

В этом опыте в качестве нагрузки применяется низкоомный реостат. Высокоомный реостат используется как потенциометр.

1. Измерить ток через нагрузку при трех различных значениях подаваемого на нее напряжения. Результаты измерения занести в табл. 12.

Задание 2. Измерение емкостного сопротивления.

1. В рабочую схему в качестве нагрузки включить батарею конденсаторов. Ток и напряжение на нагрузке измерить аналогично заданию 1. Результаты измерения также внести в табл. 12.

Примечание. Значение емкости батареи рекомендуется выбрать в интервале 20–40 мкФ.

Задание 3. Измерение импеданса катушки.

1. Измерение импеданса катушки проводится аналогично предыдущим заданиям с использованием катушки в качестве нагрузки.

Задание 4. Измерение импеданса последовательного соединения R , L и С.

1. Нагрузкой будут служить соединенные последовательно реостат, батарея конденсаторов и катушка.

2. Ток и напряжение на нагрузке измерить аналогично заданию 1.

3. По результатам каждого измерения вычислить импедансы Z эксп нагрузок.

4. Сравнить экспериментальные результаты с теоретическими или паспортными значениями. Результаты сравнения привести в выводе.

Таблица 12

Номер задания Напряжение, U Сила тока, I Z эксп, Ом Z экспср , Ом Z теор, Ом
цена деления в делениях в В цена деления в делениях в А
резистор
конденсатор
катушка
4 последовательное соединение

Примечание. Теоретическим для реостата будет его паспортное значение сопротивления. Для конденсатора Z теор определяется по использованному в опыте значению емкости, расчет производится по формуле (41). Катушка обладает и омическим, и индуктивным сопротивлением, поэтому ее импеданс вычисляется по формуле (45), причем в качестве R должна использоваться сумма омических сопротивлений реостата и катушки.

5. Вычисление погрешностей экспериментальных значений произвести по классам точности амперметра и вольтметра, теоретических – по паспортным данным приборов.

Контрольные вопросы и задания

1. Запишите и поясните закон Ома для переменного тока.

2. Как определяется омическое, реактивное и полное сопротивление в цепи переменного тока?

3. Что понимается под эффективными значениями тока и напряжения?

4. Нарисуйте векторную диаграмму для резистора в цепи переменного тока. Сделайте пояснения.

5. Нарисуйте векторную диаграмму для конденсатора в цепи переменного тока. Сделайте пояснения.

6. Нарисуйте векторные диаграммы для идеальной катушки и катушки с заметным омическим сопротивлением в цепи переменного тока. Сделайте пояснения.

7. Нарисуйте векторную диаграмму для последовательного соединения резистора, конденсатора и катушки в цепи переменного тока. Сделайте пояснения. Получите из векторной диаграммы закон Ома.

Лабораторная работа 9 (11)

ИЗМЕРЕНИЕ МОЩНОСТИ

В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Цель: ознакомиться с измерением мощности в цепи переменного тока методом трех вольтметров.

Теоретическая часть

Как всякий проводник, катушка в цепи постоянного тока потребляет энергию, идущую на нагревание проводов. Свойство проводника превращать энергию электрического тока в тепловую характеризуется его омическим сопротивлением R . Мощность тепловых потерь определяется по формуле

где I – сила тока в проводнике.

При включении катушки в цепь переменного тока у нее также происходит выделение тепла по закону (49), но в этом случае I – эффективное значение силы переменного тока.

Если у катушки имеется ферромагнитный сердечник, то проходящий по катушке переменный ток возбуждает в нем вихревые токи (токи Фуко), ведущие к нагреванию сердечника. Кроме того, происходит непрерывное изменение намагниченности сердечника по величине и направлению (перемагничивание), что также приводит к нагреванию сердечника. Эти дополнительные потери энергии эквивалентны возрастанию сопротивления проводника. Совокупные необратимые потери энергии, идущие на нагревание как проводов, так и сердечника, характеризуются активным сопротивлением катушки, определяемым по формуле

Это сопротивление, в отличие от омического, невозможно измерить, его можно лишь рассчитать.

Падение напряжения на активном сопротивлении считается колеблющимся в фазе с током.


Рис. 35

При отсутствии ваттметра мощность, потребляемая катушкой, может быть определена с использованием трех вольтметров. Если катушка обладает индуктивностью L и активным сопротивлением R а, то между током в катушке и напряжением на ней возникает сдвиг фаз j, что иллюстрируется векторной диаграммой (рис. 35), где I – ток через катушку, U а и U L – падения напряжения на активном и индуктивном сопротивлениях катушки, U к – полное напряжение на катушке.

Потребляемую катушкой мощность можно вычислить либо из (49), либо по формуле

. (51)

I и U к измеряют непосредственно, а для определения коэффициента мощности (сos j) последовательно с катушкой включается омическое сопротивление R .

Из векторной диаграммы (рис. 36) полное напряжение в цепи запишется по теореме косинусов:

. (52)

Рис. 36

В этих выражениях U – подаваемое напряжение, U к – напряжение на катушке, U R – напряжение на омическом сопротивлении. Все три напряжения измеримы непосредственно. Далее, поскольку катушка и омическое сопротивление соединены последовательно, сила тока в них одинакова и определяется по формуле

что позволяет обойтись без амперметра.

Экспериментальная часть

Оборудование: автотрансформатор; катушка; реостат; вольтметр 0-50 В; 2 вольтметра 0-150 В; сплошной и наборный сердечники.

Порядок выполнения работы

Задание 1. Измерение мощности катушки без сердечника.

В схеме на рис. 37 подаваемое в цепь напряжение регулируется автотрансформатором. В качестве омического сопротивления используется реостат.

В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.

физическая закономерность, которая определяет взаимосвязь между током , напряжением и сопротивлением проводника. Он имеет две основные формы.

Формулировка закона Ома для участка цепи сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению .

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

Задача 1.1

Задача простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.


Формулировка закона Ома для полной цепи - сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила - это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает электричество, то есть заряд.

В каждом присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи .

Задача 2.1

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.


Теперь решим задачу посложнее.

Задача 2.2

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм 2 . Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.