Что такое шина USB? Универсальная последовательная шина Шина usb обеспечивает одновременное подключение.

Универсальная последовательная шина

  • Mini-B Connector ECN : извещение выпущено в октябре 2000 года.
  • Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года.
  • Pull-up/Pull-down Resistors ECN
  • Errata, начиная с мая 2002 : извещение выпущено в мае 2002 года.
  • Interface Associations ECN : извещение выпущено в мае 2003 года.
    • Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
  • Rounded Chamfer ECN : извещение выпущено в октябре 2003 года.
  • Unicode ECN : извещение выпущено в феврале 2005 года.
    • Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE .
  • Inter-Chip USB Supplement : извещение выпущено в марте 2006 года.
  • On-The-Go Supplement 1.3 : извещение выпущено в декабре 2006 года.
    • USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.

USB OTG

USB 3.0

USB 3.0 находится на финальных стадиях разработки. Созданием USB 3.0 занимаются компании: Microsoft, Texas Instruments, NXP Semiconductors. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта будут физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии - пару для приёма/передачи данных, одну - для питания и ещё одну - для заземления. В дополнение к ним USB 3.0 добавляет пять новых линий (в результате чего кабель стал гораздо толще), однако новые контакты расположены параллельно по отношению к старым на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. USB 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь сможет не только подпитывать от одного хаба гораздо большее количество устройств, но и само аппаратное обеспечение, ранее поставлявшееся с отдельными блоками питания, избавится от них.


Здесь GND - цепь «корпуса» для питания периферийных устройств, VBus - +5 В, так же для цепей питания. Данные передаются по проводам D+ и D− дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов межу линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В. Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1.5 кОм (D− для режима Low-Speed и D+ для режима Full-Speed, устройства, работающие в режиме Hi-Speed, ведут себя на этой стадии как устройства в режиме Full-Speed). Так же иногда вокруг провода присутствует волокнистая обмотка для защиты от физических повреждений. .

Коннектор USB 3.0 тип B

Коннектор USB 3.0 тип А

Кабели и разъёмы USB 3.0

Недостатки USB

Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся. Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации.

USB и FireWire/1394

Протокол USB storage, представляющий собой метод передачи команд

Кроме того, USB storage не поддерживался в старых ОС (первоначальная Windows 98), и требовал установки драйвера. SBP-2 поддерживался и в них. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию прожига CD/DVD дисков на подключенном по USB дисководе, SBP-2 никогда не имел таких ограничений.

Шина USB строго ориентирована, потому соединение 2 компьютеров или же 2 периферийных устройств требует дополнительного оборудования. Некоторые производители поддерживают соединение принтера и сканера, или же фотоапарата и принтера, но эти реализации сильно завязаны на конкретного производителя и не стандартизированы. Шина 1394/FireWire не подвержена этому недостатку (можно соединить 2 видеокамеры).

Тем не менее, ввиду лицензионной политики Apple, а также намного более высокой сложности оборудования, 1394 менее распространен, материнские платы старых компьютеров не имеют 1394 контроллера. Что касается периферии, то поддержка 1394 обычно не встречается ни в чем, кроме видеокамер и корпусов для внешних жестких дисков и CD/DVD приводов.

См. также

  • FireWire
  • TransferJet

Источники

Ссылки

  • USB News (нем.)
  • List of USB ID’s (Vendors, devices and interfaces) (англ.)

История появления и развития стандартов Universal Serial Bus (USB)

    До появления первой реализации шины USB стандартная комплектация персонального компьютера включала один параллельный порт, обычно для подключения принтера (порт LPT), два последовательных коммуникационных порта (порты COM), обычно для подключения мыши и модема, и один порт для джойстика (порт GAME). Такая конфигурация была вполне приемлемой на заре появления персональных компьютеров, и долгие годы являлась практическим стандартом для производителей оборудования. Однако прогресс не стоял на месте, номенклатура и функциональность внешних устройств постоянно совершенствовались, что в конце концов привело к необходимости пересмотра стандартной конфигурации, ограничивающей возможность подключения дополнительных периферийных устройств, которых, с каждым днем становилось все больше и больше.

    Попытки увеличения количества стандартных портов ввода-вывода не могли привести к кардинальному решению проблемы, и возникла необходимость разработки нового стандарта, который бы обеспечивал простое, быстрое и удобное подключение большого количества разнообразных по назначению периферийных устройств к любому компьютеру стандартной конфигурации, что, в конце концов, привело к появлению универсальной последовательной шины Universal Serial Bus (USB)

    Первая спецификация последовательного интерфейса USB (Universal Serial Bus) , получившая название USB 1.0 , появилась в 1996 г. , усовершенствованная версия на ее основе, USB 1.1 - в 1998 г. Пропускная способность шин USB 1.0 и USB 1.1 - до 12 Мбит/с (реально до 1 мегабайта в секунду) была вполне достаточной для низкоскоростных периферийных устройств, вроде аналогового модема или компьютерной мышки, однако недостаточной для устройств с высокой скоростью передачи данных, что являлось главным недостатком данной спецификации. Однако, практика показала, что универсальная последовательная шина - это очень удачное решение, принятое практически всеми производителями компьютерного оборудования в качестве магистрального направления развития компьютерной периферии.

В 2000 г. появилась новая спецификация - USB 2.0 , обеспечивающая уже скорость передачи данных до 480 Мбит/с (реально до 32 мегабайт в секунду). Спецификация предполагала полную совместимость с предыдущим стандартом USB 1.X и вполне приемлемое быстродействие для большинства периферийных устройств. Начинается бум производства устройств, оснащенных интерфейсом USB. "Классические" интерфейсы ввода - вывода были полностью вытеснены и стали экзотикой. Однако, для части высокоскоростного периферийного оборудования даже удачная спецификация USB 2.0 оставалась узким местом, что требовало дальнейшего развития стандарта.

В 2005 г. была анонсирована спецификация для беспроводной реализации USB - Wireless USB - WUSB , позволяющей выполнять беспроводное подключение устройств на расстоянии до 3-х метров с максимальной скоростью передачи данных 480 Мбит/сек, и на расстоянии до 10 метров с максимальной скоростью 110 Мбит/сек. Спецификация не получила бурного развития и не решала задачу повышения реальной скорости передачи данных.

В 2006 г. была анонсирована спецификация USB-OTG (USB O n-T he-G o, благодаря которой стала возможной связь двух USB-устройств друг с другом без отдельного USB-хоста. Роль хоста в данном случае выполняет одно из периферийных устройств. Смартфонам, цифровым фотоаппаратам и прочим мобильным устройствам приходится быть как хостом, так и периферийным устройством. Например, при подключении по USB к компьютеру фотоаппарата, он является периферийным устройством, а при подключении принтеру он является хостом. Поддержка спецификации USB-OTG постепенно стала стандартом для мобильных устройств.

В 2008 г. появилась окончательная спецификация нового стандарта универсальной последовательной шины - USB 3.0 . Как и в предыдущих версиях реализации шины, предусмотрена электрическая и функциональная совместимость с предыдущими стандартами. Скорость передачи данных для USB 3.0 увеличилась в 10 раз - до 5 Гбит/сек. В интерфейсном кабеле добавились 4 дополнительные жилы, и их контакты были выведены отдельно от 4-х контактов предыдущих стандартов, в дополнительном контактном ряду. Кроме повышенной скорости передачи данных шина USB характеризуется еще и увеличившейся, по сравнению с предыдущими стандартами, силой тока в цепи питания. Максимальная скорость передачи данных по шине USB 3.0 стала приемлемой практически для любого, массово производимого периферийного компьютерного оборудования.

В 2013 году была принята спецификация следующего интерфейса - USB 3.1 , скорость передачи данных которого может достигать 10 Гбит/с. Кроме того, появился компактный 24-контактный разъём USB Type-C , который является симметричным, позволяя вставлять кабель любой стороной.

После выхода стандарта USB 3.1 организация USB Implementers Forum (USB-IF) объявила, что разъёмы USB 3.0 со скоростью до 5 Гбит/с (SuperSpeed) теперь будут классифицироваться как USB 3.1 Gen 1, а новые разъёмы USB 3.1 со скоростью до 10 Гбит/с (SuperSpeed USB 10Gbps) - как USB 3.1 Gen 2. Стандарт USB 3.1 обратно совместим с USB 3.0 и USB 2.0.

В 2017 году организация USB Implementers Forum (USB-IF) опубликовала спецификацию USB 3.2 . Максимальная скорость передачи составляет 10 Гбит/с. Однако в USB 3.2 предусмотрена возможность агрегации двух подключений (Dual-Lane Operation ), позволяющая увеличить теоретическую пропускную способность до 20 Гбит/с. Реализация этой возможности сделана опциональной, то есть ее поддержка на уровне оборудования будет зависеть от конкретного производителя и технической необходимости, которая отличается, например, для принтера и переносного жесткого диска. Возможность реализации данного режима предусмотрена только при использовании USB Type-C .

www.usb.org - Документация по спецификациям USB для разработчиков на английском языке.

Нельзя не отметить, что существовала, и пока еще существует, альтернатива шине USB. Еще до ее появления, компания Apple разработала спецификацию последовательной шины FireWire (другое название - iLink ), которая в 1995 г. была стандартизована Американским Институтом инженеров по электротехнике и электронике (IEEE) под номером 1394. Шина IEEE 1394 может работать в трех режимах: со скоростью передачи данных до 100, 200 и 400 Мбит/с. Однако, по причине высокой стоимости и более сложной реализации, чем USB, эта разновидность высокоскоростной последовательной шины, большого распространения не получила, и постепенно вытесняется USB 2.0 – USB 3.2.

Общие принципы работы периферийных устройств Universal Serial Bus (USB)

    Интерфейс USB оказался настолько удачным решением, что им оснастили практически все классы периферийных устройств, от мобильного телефона до веб-камеры или переносного жесткого диска. Наибольшее распространение получили (пока) устройства с поддержкой USB 2.0. Однако, USB 3.0 – 3.1 более востребован для высокоскоростных устройств, где он становится основным, постепенно вытесняя USB 2.0.

    Периферийные устройства, с поддержкой USB при подключении к компьютеру автоматически распознаются системой (в частности, программное обеспечение драйвера и пропускную способность шины), и готовы к работе без вмешательства пользователя. Устройства с небольшим энергопотреблением (до 500мА) могут не иметь своего блока питания и запитываться непосредственно от шины USB.

    Благодаря использованию USB отпадает необходимость снятия корпуса компьютера для установки дополнительных периферийных устройств, а также необходимость выполнения сложных настроек при их установке.

    USB устраняет проблему ограничения числа подключаемых устройств. При использовании USB с компьютером может одновременно работать до 127 устройств.

    USB позволяет выполнять "горячее" (оперативное) подключение. При этом не требуется предварительное выключение компьютера, затем подключение устройства, перезагрузка компьютера и настройка установленных периферийных устройств. Для отключения периферийного устройства не требуется выполнять процедуру, обратную описанной.

Проще говоря, USB позволяет фактически реализовать все преимущества современной технологии "plug and play" ("включай и работай"). Устройства, разработанные для USB 1.x могут работать с контроллерами USB 2.0. и USB 3.0

При подключении периферийного устройства вырабатывается аппаратное прерывание и управление получает драйвер HCD (Host Controller Driver ) контроллера USB (USB Host Controller - UHC ), который на сегодняшний день интегрирован во все выпускаемые чипсеты материнских плат. Он опрашивает устройство и получает от него идентификационную информацию, исходя из которой управление передается драйверу, обслуживающему данный тип устройств. UHC контроллер имеет корневой (root) концентратор (Hub), обеспечивающий подключение к шине устройств USB.

Концентратор (USB HUB).

Точки подключения называются портами . К порту, в качестве устройства, может быть подключен другой концентратор. Каждый концентратор имеет исходящий порт (upstream port ), соединяющие его с главным контроллером и нисходящие порты (downstream port ) для подключения периферийных устройств. Концентраторы могут обнаруживать, выполнять соединение и отсоединение в каждом порте нисходящей связи и обеспечивать распределение напряжения питания в устройства нисходящего соединения. Каждый из портов нисходящей связи может быть индивидуально активизирован и сконфигурирован на полной или низкой скорости. Концентратор состоит из двух блоков: контроллера концентратора и ретранслятора концентратора. Ретранслятор - работающий под управлением протокола коммутатор между портом восходящей связи и портами нисходящей связи. Концентратор содержит также аппаратные средства поддержки перевода в исходное состояние и приостановки/возобновления подключения. Контроллер обеспечивает интерфейсные регистры, обеспечивающие передачу данных в главный контроллер и обратно. Определенное состояние и управляющие команды концентратора позволяют главному процессору конфигурировать концентратор, а также контролировать и управлять его портами.


Внешние концентраторы могут иметь собственный блок питания или же запитываться от шины USB.

Кабели и разъемы USB

Разъемы типа А используются для подключения к компьютеру или концентратору. Разъемы типа B используются для подключения к периферийным устройствам.

Все разъёмы USB, имеющие возможность входить в соединение друг с другом, рассчитаны на совместную работу.

Имеется электрическая совместимости всех контактов разъёма USB 2.0 с соответствующими контактами разъёма USB 3.0. При этом разъём USB 3.0 имеет дополнительные контакты, не имеющие соответствия в разъёме USB 2.0, и, следовательно, при соединении разъёмов разных версий "лишние" контакты не будут задействованы, обеспечивая нормальную работу соединения версии 2.0. Все гнёзда и штекеры между USB 3.0 Тип A и USB 2.0 Тип A рассчитаны на совместную работу. Размер гнезда USB 3.0 Тип B несколько больше, чем это могло бы потребоваться для штекера USB 2.0 Тип B и более ранних. При этом предусмотрено подключение в эти гнёзда и такого типа штекеров. Соответственно, для подключения к компьютеру периферийного устройства с разъёмом USB 3.0 Тип B можно использовать кабели обоих типов, но для устройства с разъёмом USB 2.0 Тип B - только кабель USB 2.0. Гнёзда eSATAp, обозначенные как eSATA/USB Combo, то есть имеющие возможность подключения к ним штекера USB, имеют возможность подключения штекеров USB Тип A: USB 2.0 и USB 3.0, но в скоростном режиме USB 2.0.

Разъёмы USB Type-C служат для подключения как к периферийным устройствам, так и к компьютерам, заменяя различные разъёмы и кабели типов A и B предыдущих стандартов USB, и предоставляя возможности расширения в будущем. 24-контактный двухсторонний разъём является достаточно компактным, близким по размерам к разъёмам микро-B стандарта USB 2.0. Размеры разъёма - 8,4 мм на 2,6 мм. Коннектор предоставляет 4 пары контактов для питания и заземления, две дифференциальные пары D+/D- для передачи данных на скоростях менее SuperSpeed (в кабелях Type-C подключена только одна из пар), четыре дифференциальные пары для передачи высокоскоростных сигналов SuperSpeed, два вспомогательных контакта (sideband), два контакта конфигурации для определения ориентации кабеля, выделенный канал конфигурационных данных (кодирование BMC - biphase-mark code) и контакт питания +5 V для активных кабелей.

Контакты разъёма и разводка кабеля USB Type-C

Type-C - штекер и гнездо

Кон. Название Описание Кон. Название Описание
A1 GND Заземление B12 GND Заземление
A2 SSTXp1 Диф. пара № 1 SuperSpeed, передача, положительный B11 SSRXp1 Диф. пара № 2 SuperSpeed, приём, положительный
A3 SSTXn1 Диф. пара № 1 SuperSpeed, передача, отрицательный B10 SSRXn1 Диф. пара № 2 SuperSpeed, приём, отрицательный
A4 V BUS Питание B9 V BUS Питание
A5 CC1 Канал конфигурации B8 SBU2 Sideband № 2 (SBU)
A6 Dp1 Диф. пара не-SuperSpeed, положение 1, положительный B7 Dn2 Диф. пара не-SuperSpeed, положение 2, отрицательный
A7 Dn1 Диф. пара не-SuperSpeed, положение 1, отрицательный B6 Dp2 Диф. пара не-SuperSpeed, положение 2, положительный
A8 SBU1 Sideband № 1 (SBU) B5 CC2 Канал конфигурации
A9 V BUS Питание B4 V BUS Питание
A10 SSRXn2 Диф. пара № 4 SuperSpeed, передача, отрицательный B3 SSTXn2 Диф. пара № 3 SuperSpeed, приём, отрицательный
A11 SSRXp2 Диф. пара № 4 SuperSpeed, передача, положительный B2 SSTXp2 Диф. пара № 3 SuperSpeed, приём, положительный
A12 GND Заземление B1 GND Заземление
  1. Неэкранированная дифференциальная пара, может использоваться для реализации USB Low Speed (1.0), Full Speed (1.0), High Speed (2.0) - до 480 Мбит/с
  2. В кабеле реализована только одна из дифференциальных пар не-SuperSpeed. Данный контакт не используется в штекере.
Назначение проводников в кабеле USB 3.1 Type-C
Разъём №1 кабеля Type-C Кабель Type-C Разъём №2 кабеля Type-C
Контакт Название Цвет оболочки проводника Название Описание Контакт Название
Оплётка Экран Оплётка кабеля Экран Внешняя оплётка кабеля Оплётка Экран
A1, B1, A12, B12 GND Лужёный GND_PWRrt1
GND_PWRrt2
Общая земля> A1, B1, A12, B12 GND
A4, B4, A9, B9 V BUS Красный PWR_V BUS 1
PWR_V BUS 2
V BUS питание A4, B4, A9, B9 V BUS
B5 V CONN Жёлтый
PWR_V CONN V CONN питание B5 V CONN
A5 CC Синий CC Канал конфигурирования A5 CC
A6 Dp1 Белый UTP_Dp Неэкранированная дифференциальная пара, positive A6 Dp1
A7 Dn1 Зелёный UTP_Dn Неэкранированная дифференциальная пара, negative A7 Dn1
A8 SBU1 Красный SBU_A Полоса передачи данных A B8 SBU2
B8 SBU2 Чёрный SBU_B Полоса передачи данных B A8 SBU1
A2 SSTXp1 Жёлтый * SDPp1 Экранированная дифференциальная пара #1, positive B11 SSRXp1
A3 SSTXn1 Коричневый * SDPn1 Экранированная дифференциальная пара #1, negative B10 SSRXn1
B11 SSRXp1 Зелёный * SDPp2 Экранированная дифференциальная пара #2, positive A2 SSTXp1
B10 SSRXn1 Оранжевый * SDPn2 Экранированная дифференциальная пара #2, negative A3 SSTXn1
B2 SSTXp2 Белый * SDPp3 Экранированная дифференциальная пара #3, positive A11 SSRXp2
B3 SSTXn2 Чёрный * SDPn3 Экранированная дифференциальная пара #3, negative A10 SSRXn2
A11 SSRXp2 Красный * SDPp4 Экранированная дифференциальная пара #4, positive B2 SSTXp2
A10 SSRXn2 Синий * SDPn4 Экранированная дифференциальная пара #4, negative B3 SSTXn2
* Цвета для оболочки проводников не установлены стандартом

Подключение ранее выпущенных устройств к компьютерам, оснащённым разъёмом USB Type-C, потребует кабеля или адаптера, имеющих штекер или разъём типа A или типа B на одном конце и штекер USB Type-C на другом конце. Стандартом не допускаются адаптеры с разъёмом USB Type-C, поскольку их использование могло бы создать «множество неправильных и потенциально опасных» комбинаций кабелей.

Кабели USB 3.1 с двумя штекерами Type-C на концах должны полностью соответствовать спецификации - содержать все необходимые проводники, должны быть активными, включающими в себя чип электронной идентификации, перечисляющий идентификаторы функций в зависимости от конфигурации канала и сообщения, определяемые вендором (VDM) из спецификации USB Power Delivery 2.0. Устройства с разъёмом USB Type-C могут опционально поддерживать шины питания с током в 1,5 или 3 ампера при напряжении 5 вольт в дополнение к основному питанию. Источники питания должны уведомлять о возможности предоставления увеличенных токов через конфигурационный канал либо полностью поддерживать спецификацию USB Power Delivery через конфигурационный контакт (кодирование BMC) или более старые сигналы, кодируемые как BFSK через контакт VBUS. Кабели USB 2.0, не поддерживающие шину SuperSpeed, могут не содержать чип электронной идентификации, если только они не могут передавать ток 5 ампер.

Спецификация коннекторов USB Type-C версии 1.0 была опубликована форумом разработчиков USB в августе 2014 года. Она была разработана примерно в то же время, что и спецификация USB 3.1.

Использование коннектора USB Type-C не обязательно означает, что устройство реализует высокоскоростной стандарт USB 3.1 Gen1/Gen2 или протокол USB Power Delivery.

    Универсальная последовательная шина является самым распространенным, и наверно, самым удачным компьютерным интерфейсом периферийных устройств за всю историю развития компьютерного оборудования, что подтверждается огромным количеством USB - устройств, некоторые из которых могут показаться несколько

Благодаря своей универсальности и способности эффективно передавать разнородный трафик шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC - СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI. Спецификация USB 2.0 позволяет говорить и о подключении традиционных «клиентов» шин АТА и SCSI, а также захвате части ниши применения шины FireWire. Привлекательность USB придает возможность подключения/отключения устройств на ходу и возможность их использования практически сразу, без перезагрузки ОС. Удобна и возможность подключения большого количества (до 127) устройств к одной шине, правда, при наличии хабов. Хост-контроллер интегрирован в большинство современных системных плат. Выпускаются и карты расширения с контроллерами USB (обычно для шины PCI). Однако повсеместное применение USB сдерживается недостаточной активностью разработчиков ПО (производителей оборудования): просматривая перечни устройств, мы видим, что для всех указывается поддержка в Windows 98/SE/ME, а вот в графах Linux, MacOS, Unix и даже Windows 2000 часто стоят неприятные пометки N/A (Not Allowed - «не дозволено»).
Для того чтобы система USB заработала, необходимо, чтобы были загружены драйверы хост-контроллера (или контроллеров, если их несколько). При подключении устройства к шине USB ОС Windows выдает сообщение «Обнаружено новое устройство» и, если устройство подключается впервые, предлагает загрузить для него драйверы. Многие модели устройств уже известны системе, и драйверы входят в дистрибутив ОС. Однако может потребоваться и драйвер изготовителя устройства, который должен входить в комплект поставки устройства, или его придется искать в Сети. К сожалению, не все драйверы работают корректно - «сырой» драйвер начальной версии, возможно, потребуется заменить более «правильным», чтобы устройство нормально опознавалось и хорошо работало. Но это общее горе пользователей любых устройств, а не только устройств для шины USB.
Перечислим основные области применения USB.
* Устройства ввода - клавиатуры, мыши, трекболы, планшетные указатели и т. п. Здесь USB предоставляет для различных устройств единый интерфейс. Целесообразность использования USB для клавиатуры неочевидна, хотя в паре с мышью USB (подключаемой к порту хаба, встроенного в клавиатуру) сокращается количество кабелей, тянущихся от системного блока на стол пользователя.
* Принтеры. USB 1.1 обеспечивает примерно ту же скорость, что и LPT-порт в режиме ЕСР, но при использовании USB не возникает проблем с длиной кабеля и подключением нескольких принтеров к одному компьютеру (правда, требуются хабы). USB 2.0 позволит ускорить печать в режиме высокого разрешения за счет сокращения времени на передачу больших массивов данных. Однако есть проблема со старым ПО, которое непосредственно работает с LPT-портом на уровне регистров, - на принтер USB оно печатать не сможет.
* Сканеры. Применение USB позволяет отказаться от контроллеров SCSI или от занятия LPT-порта. USB 2.0 при этом позволит еще и повысить скорость передачи данных.
* Аудиоустройства - колонки, микрофоны, головные телефоны (наушники). USB позволяет передавать потоки аудиоданных, достаточные для обеспечения самого высокого качества. Передача в цифровом виде от самого источника сигнала (микрофона со встроенным преобразователем и адаптером) до приемника и цифровая обработка в хост-компьютере позволяют избавиться от наводок, свойственных аналоговой передачи аудиосигналов. Использование этих аудиокомпонентов позволяет в ряде случаев избавиться от звуковой карты компьютера - аудиокодек (АЦП и ЦАП) выводится за пределы компьютера, а все функции обработки сигналов (микшер, эквалайзер) реализуются центральным процессором чисто программно. Аудиоустройства могут и не иметь собственно колонок и микрофона, а ограничиться преобразователями и стандартными гнездами («Джеками») для подключения обычных аналоговых устройств.
* Музыкальные синтезаторы и MIDI-контроллеры с интерфейсом USB. Шина USB позволяет компьютеру обрабатывать потоки множества каналов MIDI (пропускная способность традиционного интерфейса MIDI уже гораздо ниже возможностей компьютера).
* Видео- и фотокамеры. USB 1.1 позволяет передавать статические изображения любого разрешения за приемлемое время, а также передавать поток видеоданных (живое видео) с достаточной частотой кадров (25-30 Кбит/с) только с невысоким разрешением или сжатием данных, от которого, естественно, страдает качество изображения. USB 2.0 позволяет передавать поток видеоданных высокого разрешения без сжатия (и потери качества). С интерфейсом USB выпускают как камеры, так и устройства захвата изображения с телевизионного сигнала и TV-тюнеры.
* Коммуникации. С интерфейсом USB выпускают разнообразные модемы, включая кабельные и xDSL, адаптеры высокоскоростной инфракрасной связи (IrDA FIR) - шина позволяет преодолеть предел скорости СОМ-порта (115, 2 Кбит/с), не повышая загрузку центрального процессора. Выпускаются и сетевые адаптеры Ethernet, подключаемые к компьютеру по USB. Для соединения нескольких компьютеров в локальную сеть выпускаются специальные устройства, выполняющие коммутацию пакетов между компьютерами. Непосредственно (без дополнительных устройств) портами USB соединить между собой даже два компьютера нельзя - на одной шине может присутствовать лишь один хост-контроллер (см. выше). Специальное устройство для связи пары компьютеров выглядит как «таблетка», врезанная в кабель USB с двумя вилками типа «А» на концах. Объединение более двух компьютеров осложняется и топологическими ограничениями USB: длина одного сегмента кабеля не должна превышать 5 м, а использовать хабы для увеличения дальности неэффективно (каждый хаб дает всего 5 м дополнительного удаления).
* Преобразователи интерфейсов позволяют через порт USB, имеющийся теперь практически на всех компьютерах, подключать устройства с самыми разнообразными интерфейсами: Centronics и IEEE 1284 (LPT-порты), RS-232C (эмуляция UART 16550A - основы СОМ-портов) и другие последовательные интерфейсы (RS-422, RS-485, V. 35...), эмуляторы портов клавиатуры и даже Game-порта, переходники на шину AT A, ISA, PC Card и любые другие, для которых достаточно производительности. Здесь USB становится палочкой-выручалочкой, когда встает проблема 2-го (3-го) LPT- или СОМ-порта в блокнотном ПК и в других ситуациях. При этом ПО преобразователя может обеспечить эмуляцир классического варианта «железа» стандартных портов IBM PC, но только под управлением ОС защищенного режима. Приложение MS-DOS может обращаться к устройствам по адресам ввода-вывода, памяти, прерываниями, каналами DMA, но только из сеанса MS-DOS, открытого в ОС с поддержкой USB (чаще это Windows). При загрузке «голой» MS-DOS «палочка-выручалочка» не работает. Преобразователи интерфейсов позволяют продлить жизнь устройствам с традиционными интерфейсами, изживаемыми из PC спецификациями РС"99 и РС"2001. Скорость передали данных через конвертер USB - LPT может оказаться даже выше, чем у реального LPT-порта, работающего в режиме SPP.
* Устройства хранения - винчестеры, устройства чтения и записи CD и DVD, стриммеры - при использовании USB 1.1 получают скорость передачи, соизмеримую со скоростью их подключения к LPT, но более удобный интерфейс (как аппаратный, так и программный). При переходе на USB 2.0 скорость передачи данных становится соизмеримой с АТА и SCSI, а ограничений по количеству устройств достичь трудно. Особенно интересно использование USB для электронных устройств энергонезависимого хранения (на флэш-памяти) - такой накопитель может быть весьма компактным (размером с брелок для ключей) и емким (пока 16-256 Мбайт, в перспективах - гигабайт и более). Выпускаются устройства для мобильного подключения накопителей с интерфейсом АТА-AT API - по сути, это лишь преобразователи интерфейсов, помещенные в коробку-отсек формата 5" или 3, 5", а иногда выполненные прямо в корпусе 36-контактного азъема АТА. Имеются и устройства чтения-записи карт SmartMedia Card и CompactFlash Card.
* Игровые устройства - джойстики всех видов (от «палочек» до автомобильных рулей), пульты с разнообразными датчиками (непрерывными и дискретными) и исполнительными механизмами (почему бы не сделать кресло автогонщика с вибраторами и качалками?) - подключаются унифицированным способом. При этом исключается ресурсопожирающий интерфейс старого игрового адаптера (упраздненного уже в спецификации РС"99).
* Телефоны - аналоговые и цифровые (ISDN). Подключение телефонного аппарата позволяет превратить компьютер в секретаря с функциями автодозвона, автоответчика, охраны и т. п.
* Мониторы - здесь шина USB используется для управления параметрами монитора. Монитор сообщает системе свой тип и возможности (параметры синхронизации) - это делалось и без USB по шине DDC. Однако USB-мониторы позволяют системе еще и управлять ими - регулировки яркости, контраста, цветовой температуры и т. п. могут теперь выполняться программно, а не только от кнопок лицевой панели монитора. В мониторы, как правило, встраивают хабы. Это удобно, поскольку настольную периферию не всегда удобно включать в «подстольный» системный блок.
* Электронные ключи - устройства с любым уровнем интеллектуальности защиты - могут быть выполнены в корпусе вилок USB. Они гораздо компактнее и мобильнее аналогичных устройств для СОМ- и LPT-портов.
Конечно же, перечисленными классами устройств сфера применения шины USB не ограничивается.
Хабы USB выпускаются как в виде отдельных устройств, так и встраиваются в периферийные устройства (клавиатуры, мониторы). Как правило, хабы питаются от сети переменного тока (они должны питать подключаемые устройства). Выпускают и хабы, устанавливаемые внутрь системного блока компьютера и питающиеся от его блока питания. Такие хабы дешевле внешних и не требуют дополнительной питающей розетки. Один из вариантов исполнения - установка хаба на скобку, монтируемую в окно для дополнительных разъемов. Доступ к их разъемам со «спины» системного блока не очень удобен для пользователей. Другой вариант - хаб, устанавливаемый в 3"-отсек. Его разъемы легкодоступны, индикаторы состояния портов хорошо видны, но не всегда удобны кабели, выходящие с передней панели системного блока. С другой стороны, для подключения электронных ключей (если их приходится часто менять) или миниатюрных накопителей этот вариант - самый удобный.
Недавно появились и новые вспомогательные устройства, увеличивающие дальность связи (distance extender). Это пара устройств, соединяемых между собой обычным кабелем «витая пара» (или оптоволокном), включаемая между периферийным устройством и хабом. «Удлинитель» со стороны периферии может иметь и хаб на несколько портов. К сожалению, увеличение дистанции упирается в ограничения на время задержки сигнала, свойственные протоколу шины USB, и достижимо лишь удаление до 100 м. Но даже и эта длина позволяет расширить сферу применения USB, например для удаленного видеонаблюдения.

· Лекция 14. Универсальная последовательная шина USB.

Толковый словарь по вычислительным системам определяет понятие интерфейс (interface) как границу раздела двух систем, устройств или программ; элементы соединения и вспомогательные схемы управления, используемые для соединения устройств. Мы же поговорим о интерфейсах, позволяющих подключать к персональным (и не только) компьютерам разнообразные периферийные устройства и их контроллеры. По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами. В последовательном же интерфейсе биты передаются друг за другом, обычно по одной линии. СОМ порты PC обеспечивают последовательный интерфейс в соответствии со стандартом RS-232C. При рассмотрении интерфейсов важным параметром является пропускная способность.

В архитектуре современных компьютеров все большее значение приобретают внешние шины, служащие для подключения различных устройств. Сегодня это могут быть, например, внешние жесткие диски, CD-, DVD-устройства, сканеры, принтеры, цифровые камеры и прочее.

Широко используемый последовательный интерфейс синхронной и асинхронной передачи данных.

2.Шина USB.Общая характеристика.

USB (Universal Serial Bus - универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.0 была опубликована в январе 1996 года. Архитектура USB определяется следующими критериями:

Ø Легко реализуемое расширение периферии PC.

Ø Дешевое решение, поддерживающее скорость передачи до 12 M бит/с.

Ø Полная поддержка в реальном времени передачи аудио и (сжатых) видеоданных.

Ø Гибкость протокола смешанной передачи изохронных данных и асинхронных сообщений.

Ø Интеграция с выпускаемыми устройствами.

Ø Доступность в PC всех конфигураций и размеров.

Ø Обеспечение стандартного интерфейса, способного быстро завоевать рынок.

Ø Создание новых классов устройств, расширяющих PC.

Ø С точки зрения конечного пользователя, привлекательны следующие черты USB:

Ø Простота кабельной системы и подключений.

Ø Скрытие подробностей электрического подключения от конечного пользователя.

Ø Самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование.

Ø Возможность динамического подключения и конфигурирования ПУ.

С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом. Уже появились модемы, клавиатуры, сканеры, динамики и другие устройства ввода/вывода с поддержкой USB, а также мониторов с USB-адаптерами - они играют роль концентраторов для подключения других устройств.

Структура USB

USB обеспечивает одновременный обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Распределение пропускной способности шины между ПУ планируется хостом и реализуется им с помощью посылки маркеров. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.

Ниже приводится авторский вариант перевода терминов из спецификации "Universal Serial Bus Specification", опубликованной Compaq , DEC , IBM , Intel , Microsoft , NEC и Northern Telecom . Более подробную и оперативную информацию можно найти по адресу:

Устройства (Device) USB могут являться хабами, функциями или их комбинацией. Хаб (Hub) обеспечивает дополнительные точки подключения устройств к шине. Функции (Function) USB предоставляют системе дополнительные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Многие устройства, подключаемые к USB, имеют в своем составе и хаб, и функции. Работой всей системы USB управляет хост-контроллер (Host Controller), являющийся программно-аппаратной подсистемой хост-компьютера.

Физическое соединение устройств осуществляется по топологии многоярусной звезды. Центром каждой звезды является хаб, каждый кабельный сегмент соединяет две точки - хаб с другим хабом или с функцией. В системе имеется один (и только один) хост-контроллер, расположенный в вершине пирамиды устройств и хабов. Хост-контроллер интегрируется с корневым хабом (Root Hub), обеспечивающим одну или несколько точек подключения - портов. Контроллер U SB, входящий в состав чипсетов, обычно имеет встроенный двухпортовый хаб. Логически устройство, подключенное к любому хабу USB и сконфигурированное (см. ниже), может рассматриваться как непосредственно подключенное к хост-контроллеру.

Функции представляют собой устройства, способные передавать или принимать данные или управляющую информацию по шине. Типично функции представляют собой отдельные ПУ с кабелем, подключаемым к порту хаба. Физически в одном корпусе может быть несколько функций со встроенным хабом, обеспечивающим их подключение к одному порту. Эти комбинированные устройства для хоста являются хабами с постоянно подключенными устройствами-функциями.

Каждая функция предоставляет конфигурационную информацию, описывающую возможности ПУ и требования к ресурсам. Перед использованием функция должна быть сконфигурирована хостом - ей должна быть выделена полоса в канале и выбраны опции конфигурации.

Примерами функций являются:

Ø Указатели - мышь, планшет, световое перо.

Ø Устройства ввода - клавиатура или сканер.

Ø Устройство вывода - принтер, звуковые колонки (цифровые).

Ø Телефонный адаптер ISDN.

Хаб - ключевой элемент системы РпР в архитектуре USB. Хаб является кабельным концентратором. Точки подключения называются портами хаба. Каждый хаб преобразует одну точку подключения в их множество. Архитектура допускает соединение нескольких хабов.

У каждого хаба имеется один восходящий порт (Upstream Port), предназначенный для подключения к хосту или хабу верхнего уровня. Остальные порты являются нисходящими (Downstream Ports), предназначенными для подключения функций или хабов нижнего уровня. Хаб может распознать подключение устройств к портам или отключение от них и управлять подачей питания на их сегменты. Каждый из портов может быть разрешен или запрещен и сконфигурирован на полную или ограниченную скорость обмена. Хаб обеспечивает изоляцию сегментов с низкой скоростью от высокоскоростных.

Хабы могут управлять подачей питания на нисходящие порты; предусматривается установка ограничения на ток, потребляемый каждым портом.

Система USB разделяется на три уровня с определенными правилами взаимодействия. Устройство USB содержит интерфейсную часть, часть устройства и функциональную часть. Хост тоже делится на три части - интерфейсную, системную и ПО устройства. Каждая часть отвечает только за определенный круг задач, логическое и реальное взаимодействие между ними иллюстрирует рис. 7.1.

В рассматриваемую структуру входят следующие элементы:

Ø Физическое устройство USB - устройство на шине, выполняющее функции, интересующие конечного пользователя.

Ø Client SW - ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

Ø USB System SW - системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

Ø USB Host Controller - аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

3.Физический интерфейс

Стандарт USB определяет электрические и механические спецификации шины. Информационные сигналы и питающее напряжение 5 В передаются по четырехпроводному кабелю. Используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Уровни сигналов передатчиков в статическом режиме должны быть ниже 0,3 В (низкий уровень) или выше 2,8 В (высокий уровень). Приемники выдерживают входное напряжение в пределах - 0,5...+3,8 В. Передатчики должны уметь переходить в высокоимпедансное состояние для двунаправленной полудуплексной передачи по одной паре проводов.

Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника каждое устройство имеет линейные приемники сигналов D+ и D-, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса. Состояния Diff0 и Diff1 определяются по разности потенциалов на линиях D+ и D- более 200 мВ при условии, что на одной из них потенциал выше порога срабатывания VSE. Состояние, при котором на обоих входах D+ и D- присутствует низкий уровень, называется линейным нулем (SEO - Single-Ended Zero). Интерфейс определяет следующие состояния:

Ø Data J State и Data К State - состояния передаваемого бита (или просто J и К), определяются через состояния Diff0 и Diff1.

Ø Idle State - пауза на шине.

Ø Resume State - сигнал "пробуждения" для вывода устройства из "спящего" режима.

Ø Start of Packet (SOP) - начало пакета (переход из Idle State в К).

Ø End of Packet (EOP) - конец пакета .

Ø Disconnect - устройство отключено от порта.

Ø Connect - устройство подключено к порту.

Ø Reset - сброс устройства.

Состояния определяются сочетаниями дифференциальных и линейных сигналов; для полной и низкой скоростей состояния DiffO и Diff1 имеют противоположное назначение.
В декодировании состояний Disconnect, Connect и Reset учитывается время нахождения линий (более 2,5 мс) в определенных состояниях.

Шина имеет два режима передачи. Полная скорость передачи сигналов USB составляет 12 Мбит/с, низкая - 1,5 Мбит/с. Для полной скорости используется экранированная витая пара с импедансом 90 Ом и длиной сегмента до 5 м, для низкой - невитой неэкранированньгй кабель до 3 м. Низкоскоростные кабели и устройства дешевле высокоскоростных. Одна и та же система может одновременно использовать оба режима; переключение для устройств осуществляется прозрачно.

Низкая скорость предназначена для работы с небольшим количеством ПУ, не требующих высокой скорости. Скорость, используемая устройством, подключенным к конкретному порту, определяется хабом по уровням сигналов

на линиях D+ и D-, смещаемых нагрузочными резисторами R2 приемопередатчиков (см. рис. 7.2 и 7.3)

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert), его работу иллюстрирует рис. 7.4. Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика. Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам.

Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения. Стандарт определяет два типа разъемов (см. табл. 7.1 и рис. 7.5).

Разъемы типа "А" применяются для подключения к хабам (Upstream Connector). Вилки устанавливаются на кабелях, не отсоединяемых от устройств (например, клавиатура, мышь и т. п.). Гнезда устанавливаются на нисходящих портах (Downstream Port) хабов. Разъемы типа "В" (Downstream Connector) устанавливаются на устройствах, от которых соединительный кабель может отсоединяться (принтеры и сканеры). Ответная часть (вилка) устанавливается на соединительном кабеле, противоположный конец которого имеет вилку типа "А".

Разъемы типов "А" и "В" различаются механически (рис. 7.5), что исключает недопустимые петлевые соединения портов хабов. Четырехконтактные разъемы имеют ключи, исключающие неправильное присоединение. Конструкция разъемов обеспечивает позднее соединение и раннее отсоединение сигнальных цепей по сравнению с питающими. Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение.

Рис. 7.5. Гнезда USB: а - типа "А", б - типа "В", в - символическое обозначение

Питание устройств USB возможно от кабеля (Bus-Powered Devices) или от собственного блока питания (Self-Powered Devices). Хост обеспечивает питанием непосредственно подключенные к нему ПУ. Каждый хаб, в свою очередь, обеспечивает питание устройств, подключенных к его нисходящим портам. При некоторых ограничениях топологии допускается применение хабов, питающихся от шины. На рис. 7.6 приведен пример схемы соединения устройств USB.

Здесь клавиатура, перо и мышь могут питаться от шины.

USB поддерживает как однонаправленные, так и двунаправленные режимы связи. Передача данных производится между ПО хоста и конечной точкой устройства. Устройство может иметь несколько конечных точек, связь с каждой из них (канал) устанавливается независимо.

Архитектура USB допускает четыре базовых типа передачи данных:

Ø Управляющие посылки (Control Transfers), используемые для конфигурирования во время подключения и в процессе работы для управления устройствами. Протокол обеспечивает гарантированную доставку данных. Длина поля данных управляющей посылки не превышает 64 байт на полной скорости и 8 байт на низкой.

Ø Сплошные передачи (Bulk Data Transfers) сравнительно больших пакетов без жестких требований ко времени доставки. Передачи занимают всю свободную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи.

Ø Прерывания (Interrupt) - короткие (до 64 байт на полной скорости, до 8 байт на низкой) передачи типа вводимых символов или координат. Прерывания имеют спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Предел времени обслуживания устанавливается в диапазоне 1-255 мс для полной скорости и 10-255 мс - для низкой.

Ø Изохронные передачи (Isochronous Transfers) - непрерывные передачи в реальном времени, занимающие предварительно согласованную часть пропускной способности шины и имеющие заданную задержку доставки. В случае обнаружения ошибки изохронные данные передаются без повтора - недействительные пакеты игнорируются. Пример - цифровая передача голоса. Пропускная способность определяется требованиями к качеству передачи, а задержка доставки может быть критичной, например, при реализации телеконференций.

Полоса пропускания шины делится между всеми установленными каналами. Выделенная полоса закрепляется за каналом, и если установление нового канала требует такой полосы, которая не вписывается в уже существующее распределение, запрос на выделение канала отвергается.

Архитектура USВ предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд.

Изохронные передачи классифицируются по способу синхронизации конечных точек - источников или получателей данных - с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Протокол

Все обмены (транзакции) по USB состоят из трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-аркер (Token Packet). Он описывает тип и направление передачи, адрес ус-тройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет подтверждения (Handshake Packet).

Планирование транзакций обеспечивает управление поточными каналами. На аппаратном уровне использование отказа от транзакции (NAck) при недопустимой интенсивности передачи предохраняет буферы от переполнения сверху и снизу. Маркеры отвергнутых транзакций повторно передаются в свободное для шины время. Управление потоками позволяет гибко планировать обслуживание одновременных разнородных потоков данных.

Устойчивость к ошибкам обеспечивают следующие свойства USB:

Ø Высокое качество сигналов, достигаемое благодаря дифференциальным приемникам/передатчикам и экранированным кабелям.

Ø Защита полей управления и данных CRC-кодами.

Ø Обнаружение подключения и отключения устройств и конфигурирование ресурсов на системном уровне.

Ø Самовосстановление протокола с тайм-аутом при потере пакетов.

Ø Управление потоком для обеспечения изохронности и управления аппаратными буферами.

Ø Независимость функций от неудачных обменов с другими функциями.

Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки. Аппаратные средства обнаруживают ошибки передачи, а контроллер автоматически производит трехкратную попытку передачи. Если повторы безуспешны, сообщение об ошибке передается клиентскому ПО.

Устройства USB - функции и хабы

Возможности шины USB позволяют использовать ее для подключения разнообразных устройств. Не касаясь "полезных" свойств ПУ, остановимся на их интерфейсной части, связанной с шиной USB. Все устройства должны поддерживать набор общих операций, перечисленных ниже. Динамическое подключение и отключение. Эти события отслеживаются хабом, который сообщает о них хост-контроллеру и выполняет сброс подключенного устройства. Устройство после сигнала сброса должно отзываться на нулевой адрес, при этом оно не сконфигурировано и не приостановлено. После назначения адреса, за которое отвечает хост-контроллер, устройство должно отзываться только на свой уникальный адрес.

Конфигурирование устройств, выполняемое хостом, является необходимым для их использования. Для конфигурирования обычно используется информация, считанная из самого устройства. Устройство может иметь множество интерфейсов, каждому из которых соответствует собственная конечная точка, представляющая хосту функцию устройства. Интерфейс в конфигурации может иметь альтернативные наборы характеристик; смена наборов поддерживается протоколом. Для поддержки адаптивных драйверов дескрипторы устройств и интерфейсов имеют поля класса, подкласса и протокола.

Передача данных возможна посредством одного из четырех типов передач (см. выше). Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них.

Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации, и если хаб не сможет обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.

Устройство USB должно поддерживать приостановку (Suspended Mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.

Возможность удаленного пробуждения (Remote Wakeup) позволяет приостановленному устройству подать сигнал хосткомпьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.

Хаб в USB выполняет коммутацию сигналов и выдачу питающего напряжения, а также отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях. Хаб состоит из двух частей - контроллера (Hub Controller) и повторителя (Hub Repeater). Повтори Повторитель представляет собой управляемый ключ, соединяющий выходной порт со входным. Он имеет средства поддержки сброса и приостановки передачи сигналов. Контроллер содержит регистры для взаимодействия с хостом. Доступ к регистрам осуществляется по специфическим командам обращения к хабу. Команды позволяют конфигурировать хаб, управлять нисходящими портами и наблюдать их состояние.

Нисходящие (Downstream) порты хабов могут находиться в следующих состояниях:

Ø Powered (питание отключено) - на порт не подается питание (возможно только для хабов, коммутирующих питание). Выходные буферы переводятся в высокоимпедансное состояние, входные сигналы игнорируются.

Ø Disconnected (отсоединен) - порт не передает сигналы ни в одном направлении, но способен обнаружить подключение устройства (по отсутствию состояния SEO в течение 2,5 мкс). Тогда порт переходит в состояние Disabled, а по уровням входных сигналов {DiffO или Diff1 в состоянии Idle) он определяет скорость подключенного устройства.

Ø Disabled (запрещен) - порт передает только сигнал сброса (по команде от контроллера), сигналы от порта (кроме обнаружения отключения) не воспринимаются. По обнаружении отключения (2,5 мкс состояния SEO) порт переходит в состояние Disconnect, а если отключение обнаружено "спящим" хабом, контроллеру будет послан сигнал Resume.

Ø Enabled (разрешен) - порт передает сигналы в обоих направлениях. По команде контроллера или по обнаружении ошибки кадра порт переходит в состояние Disabled, а по обнаружении отключения - в состояние Disconnect.

Ø Suspended (приостановлен) - порт передает сигнал перевода в состояние останова ("спящий" режим). Если хаб находится в активном состоянии, сигналы через порт не пропускаются ни в одном направлении. Однако "спящий" хаб воспринимает сигналы смены состояния незапрещенных портов, подавая "пробуждающие" сигналы от активизировавшегося устройства даже через цепочку "спящих" хабов. Состояние каждого порта идентифицируется контроллером хаба с помощью отдельных регистров. Имеется общий регистр, биты которого отражают факт изменения состояния каждого порта (фиксируемый во время EOF). Это позволяет хост-контроллеру быстро узнать состояние хаба, а в случае обнаружения изменений специальными транзакциями уточнить состояние.

Хост-контроллер

Хост-компьютер общается с устройствами через контроллер. Хост имеет следующие обязанности:

Ø обнаружение подключения и отсоединения устройств USB;

Ø манипулирование потоком управления между устройствами и хостом;

Ø управление потоками данных;

Ø сбор статистики;

Ø обеспечение энергосбережения подключенными ПУ.

Ø Системное ПО контроллера управляет взаимодействием между устройствами и их ПО, функционирующим на хост-компьютере, для согласования:

Ø нумерации и конфигурации устройств;

Ø изохронных передач данных;

Ø асинхронных передач данных;

Ø управления энергопотреблением;

Ø информации об управлении устройствами и шиной.

Первая спецификация (версия 1.0) USB была опубликована в начале 1996 года, а осенью 1998 года появилась спецификация 1.1, исправляющая проблемы, обнаруженные в первой редакции. Весной 2000 года была опубликована версия 2.0, в которой предусматривалось 40-кратное повышение пропускной способности шины. Так, спецификация 1.0 и 1.1 обеспечивает работу на скоростях 12 Мбит/с и 1,5 Мбит/с, а спецификация 2.0 - на скорости 480 Мбит/с. При этом предусматривается обратная совместимость USB 2.0 с USB 1.х.

Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel , Microsoft , Hewlett-Packard , Texas Instruments , NEC и. NXP Semiconductors В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. В дополнение к четырем линиям USB 2.0 в USB 3.0 добавляется еще четыре линии связи (две витых пары). Новые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с, таким образом, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с и позволяет передать 1 Тб не за 8-10 часов, а за 40 минут-1 час. Версия 3.0 так же может похвастаться увеличенной силой тока с 500 мА до 900 мА, поэтому пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.

Общая архитектура USB

Физическая архитектура USB определяется следующими правилами:

  • устройства подключаются к хосту;
  • физическое соединение устройств между собой осуществляется по топологии многоярусной звезды, вершиной которой является корневой хаб;
  • центром каждой звезды является хаб;
  • каждый кабельный сегмент соединяет между собой две точки: хост с хабом или функцией, хаб с функцией или другим хабом;
  • к каждому порту хаба может подключаться периферийное USB-устройство или другой хаб, при этом допускаются до 5 уровней каскадирования хабов, не считая корневого.

Самым верхним уровнем является корневой концентратор, который обычно совмещается с USB контроллером.

К корневому концентратору могут быть подключены либо устройства, либо еще концентраторы, для увеличения числа доступных портов. Концентратор может быть выполнен в виде отдельного устройства, либо быть встроенным в какое-то другое, т.е. устройства, подключаемые к USB, можно подразделить на функциональные устройства, т.е. те, которые выполняют какую-то конкретную функцию (например, мыши), устройства-концентратор, выполняющие только функцию только разветвления, и совмещенные устройства, имеющие в своем составе концентратор, расширяющие набор портов (например, мониторы, с портами для подключения других).


На пятом уровне комбинированное устройство использоваться не может. Кроме того отдельно стоит упомянуть о хосте, являющемся скорее программно-аппаратным комплексом, нежели просто устройством.


Детали физической архитектуры скрыты от прикладных программ в системном программном обеспечении (ПО), поэтому логическая архитектура выглядит как обычная звезда, центром которой является прикладное ПО, а вершинами - набор конечных точек. Прикладная программа ведет обмен информацией с каждой конечной точкой.

Составляющие USB

Шина USB состоит из следующих элементов:


Свойства USB-устройств

  • адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;
  • конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;
  • передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;
  • управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. При конфигурировании устройство заявляет свои потребности тока, но не более 500 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;
  • приостановка - USB-устройство должно поддерживать приостановку (suspended mode), при которой его потребляемый ток не превышает 500 мкА. USB-устройство должно автоматически приостанавливаться при прекращении активности шины;
  • удаленное пробуждение - возможность удаленного пробуждения (remote wakeup) позволяет приостановленному USB-устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации USB-устройства. При конфигурировании эта функция может быть запрещена.

Логические уровни обмена данными

Спецификация USB определяет три логических уровня с определенными правилами взаимодействия. USB-устройство содержит интерфейсную, логическую и функциональную части. Хост тоже делится на три части - интерфейсную, системную и ПО. Каждая часть отвечает только за определенный круг задач.

Таким образом, операция обмена данными между прикладной программой и шиной USB выполняется путем передачи буферов памяти через следующие уровни:

  • уровень клиентского ПО в хосте:
    • обычно представляется драйвером USB-устройства;
    • обеспечивает взаимодействие пользователя с операционной системой с одной стороны и системным драйвером с другой;
  • уровень системного драйвера USB в хосте(USB, Universal Serial Bus Driver):
    • управляет нумерацией устройств на шине;
    • управляет распределением пропускной способности шины и мощности питания;
    • обрабатывает запросы пользовательских драйверов;
  • уровень хост-контроллера интерфейса шины USB (HCD, Host Controller Driver):
    • преобразует запросы ввода/вывода в структуры данных, по которым выполняются физические транзакции;
    • работает с регистрами хоста.

Отношения клиентского программного обеспечения и USB устройств: USB предоставляет для взаимодействия программный интерфейс и только его, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Для клиентской программы USB - это лишь набор функций.

Взаимодействие компонентов USB представлено на схеме ниже:

В рассматриваемую структуру входят следующие элементы:

Физическое устройство USB — устройство на шине, выполняющее функции, интересующие конечного пользователя.

Client SW — ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

USB System SW — системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

USB Host Controller — аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

Принципы передачи данных

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Канал является логической связкой между хостом и конечной точкой внешнего устройства.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщений.

Поток доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: сплошной, изохронный и прерывания. Доставка всегда идет в порядке «первым вошел — первым вышел» (FIFO); с точки зрения USB, данные потока неструктурированны. Сообщения имеют формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двухсторонний обмен сообщениями адресуется к одной и той же конечной точке. Для доставки сообщений используется только обмен типа «управление».

С каналами связаны характеристики, соответствующие конечной точке. Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

Любой обмен по шине USB инициируется хост-контроллером. Он организует обмены с устройствами согласно своему плану распределения ресурсов.

Контроллер циклически (с периодом 1,0 ± 0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные передачи.

Каждый кадр начинается с посылки пакета-маркера SOF (Start Of Frame, начало кадра), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame, конец кадра), на время которого хабы запрещают передачу по направлению к контроллеру. Если хаб обнаружит, что с какого-то порта в это время ведется передача данных, этот порт отключается.

В режиме высокоскоростной передачи пакеты SOF передаются в начале каждого микрокадра (период 125 ± 0,0625 мкс).

Хост планирует загрузку кадров так, чтобы в них всегда находилось место для наиболее приоритетных передач, а свободное место кадров заполняется низкоприоритетными передачами больших объемов данных. Спецификация USB позволяет занимать под периодические транзакции (изохронные и прерывания) до 90% пропускной способности шины.

Каждый кадр имеет свой номер. Хост-контроллер оперирует 32-битным счетчиком, но в маркере SOF передает только младшие 11 бит. Номер кадра циклически увеличивается во время EOF.

Для изохронной передачи важна синхронизация устройств и контроллера. Есть три варианта синхронизации:

  • синхронизация внутреннего генератора устройства с маркерами SOF;
  • подстройка частоты кадров под частоту устройства;
  • согласование скорости передачи (приема) устройства с частотой кадров.

В каждом кадре может быть выполнено несколько транзакций, их допустимое число зависит от скорости, длины поля данных каждой из них, а также от задержек, вносимых кабелями, хабами и устройствами. Все транзакции кадров должны быть завершены до момента времени EOF. Частота генерации кадров может немного варьироваться с помощью специального регистра хост-контроллера, что позволяет подстраивать частоту для изохронных передач. Подстройка частоты кадров контроллера возможна под частоту внутренней синхронизации только одного устройства.

Информация по каналу передается в виде пакетов (Packet). Каждый пакет начинается с поля синхронизации SYNC (SYNChronization), за которым следует идентификатор пакета PID (Packet IDentifier). Поле Check представляет собой побитовую инверсию PID.

Структура данных пакета зависит от группы, к которой он относится.

1. Клиентское ПО посылает IPR-запросы уровню USBD.

2. Драйвер USBD разбивает запросы на транзакции по следующим правилам:

  • выполнение запроса считается законченным, когда успешно завершены все транзакции, его составляющие;
  • все подробности отработки транзакций (такие как ожидание готовности, повтор транзакции при ошибке, неготовность приемника и т. д.) до клиентского ПО не доводятся;
  • ПО может только запустить запрос и ожидать или выполнения запроса или выхода по тайм-ауту;
  • устройство может сигнализировать о серьезных ошибках, что приводит к аварийному завершению запроса, о чем уведомляется источник запроса.

3. Драйвер контроллера хоста принимает от системного драйвера шины перечень транзакций и выполняет следующие действия:

  • планирует исполнение полученных транзакций, добавляя их к списку транзакций;
  • извлекает из списка очередную транзакцию и передает ее уровню хост-контроллера интерфейса шины USB;

4. Хост-контроллер интерфейса шины USB формирует кадры;

5. Кадры передаются последовательной передачей бит по методу NRZI

Таким образом, можно сформировать следующую упрощенную схему:

1. каждый кадр состоит из наиболее приоритетных посылок, состав которых формирует драйвер хоста;

2. каждая передача состоит из одной или нескольких транзакций;

3. каждая транзакция состоит из пакетов;

4. каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.

Типы сообщений в USB

Спецификация шины определяет четыре различных типа передачи (transfer type) данных для конечных точек:

  • управляющие передачи (Control Transfers ) — используются хостом для конфигурирования устройства во время подключения, для управления устройством и получения статусной информации в процессе работы. Протокол обеспечивает гарантированную доставку таких посылок. Длина поля данных управляющей посылки не может превышать 64 байт на полной скорости и 8 байт на низкой. Для таких посылок хост гарантированно выделяет 10% полосы пропускания;
  • передачи массивов данных (Bulk Data Transfers ) — применяются при необходимости обеспечения гарантированной доставки данных от хоста к функции или от функции к хосту, но время доставки не ограничено. Такая передача занимает всю доступную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет у таких передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи. Такие посылки используются, например, принтерами или сканерами;
  • передачи по прерываниям (Interrupt Transfers ) — используются в том случае, когда требуется передавать одиночные пакеты данных небольшого размера. Каждый пакет требуется передать за ограниченное время. Операции передачи носят спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Поле данных может содержать до 64 байт на полной скорости и до 8 байт на низкой. Предел времени обслуживания устанавливается в диапазоне 1—255 мс для полной скорости и 10—255 мс — для низкой. Такие передачи используются в устройствах ввода, таких как мышь и клавиатура;
  • изохронные передачи (Isochronous Transfers ) — применяются для обмена данными в "реальном времени", когда на каждом временном интервале требуется передавать строго определенное количество данных, но доставка информации не гарантирована (передача данных ведется без повторения при сбоях, допускается потеря пакетов). Такие передачи занимают предварительно согласованную часть пропускной способности шины и имеют заданную задержку доставки. Изохронные передачи обычно используются в мультимедийных устройствах для передачи аудио- и видеоданных, например, цифровая передача голоса. Изохронные передачи разделяются по способу синхронизации конечных точек — источников или получателей данных — с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Механизм прерываний

Для шины USB настоящего механизма прерываний не существует. Вместо этого хост опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1 - 32 мс. Устройству разрешается посылать до 64 байт данных.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хостом, который и обеспечивает поддержку физической реализации USB-интерфейса.

Режимы передачи данных

Шина USB имеет три режима передачи данных:

  • низкоскоростной (LS, Low-speed) 1.5 Мбит/с;
  • полноскоростной (LF, Full-speed) 12 Мбит/с;
  • высокоскоростной (HS, High-speed, только для USB 2.0) 480 Мбит/с.

Подключение периферийных устройств к шине USB

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства.

Спецификация 1.0 регламентировала два типа разъёмов:


Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB.

Существуют также разъёмы типа Mini AB и Micro AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

Так же существуют миниатюрные разъёмы - Micro USB.

Тип USB 2.0 Значение контактов Цвет провода

Подключение полноскоростного устройства

Подключение низкоскоростного устройства

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert). Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.